Compact formula for skew-symmetric system of matrix equations
نویسندگان
چکیده
Abstract In this paper, we consider skew-Hermitian solution of coupled generalized Sylvester matrix equations encompassing $$*$$ ∗ -hermicity over complex field. The compact formula the general system is presented in terms inverses when some necessary and sufficient conditions are fulfilled. An algorithm a numerical example provided to validate our findings. A carried out using determinantal representations Moore–Penrose inverse.
منابع مشابه
The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2
Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...
متن کاملA Range Associated with Skew Symmetric Matrix
We study the range S(A) := {xT Ay : x, y are orthonormal in Rn}, where A is an n×n complex skew symmetric matrix. It is a compact convex set. Power inequality s(A) ≤ s(A), k ∈ N, for the radius s(A) := maxξ∈S(A) |ξ| is proved. When n = 3, 4, 5, 6, relations between S(A) and the classical numerical range and the k-numerical range are given. Axiomatic characterization of S(A) is given. Sharp poin...
متن کاملInverse Matrix of Symmetric Circulant Matrix on Skew Field
Introduced the notion of symmetric circulant matrix on skew field, an easy method is given to determine the inverse of symmetric circulant matrix on skew field , with this method , we derived the formula of determine inverse about several special type of symmetric circulant matrix. Mathematics Subject Classification: 05A19, 15A15
متن کاملSymmetric matrix polynomial equations
For problems of linear control system synthesis, an apparatus of polynomial equations (for single-variable case) and of matrix polynomial equations (for multivariable case) was successfully developed in recent times, cf. [1]. In connection with quadratic criteria, we are led to equations of special type, containing an operation of conjugation ah-* a* representing a(s) i-> a( — s) for continuous...
متن کاملthe (r,s)-symmetric and (r,s)-skew symmetric solutions of the pair of matrix equations a1xb1 = c1 and a2xb2 = c2
let $rin textbf{c}^{mtimes m}$ and $sin textbf{c}^{ntimes n}$ be nontrivial involution matrices; i.e., $r=r^{-1}neq pm~i$ and $s=s^{-1}neq pm~i$. an $mtimes n$ complex matrix $a$ is said to be an $(r, s)$-symmetric ($(r, s)$-skew symmetric) matrix if $ras =a$ ($ ras =-a$). the $(r, s)$-symmetric and $(r, s)$-skew symmetric matrices have a number of special properties and widely used in engi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arabian Journal of Mathematics
سال: 2023
ISSN: ['2193-5343', '2193-5351']
DOI: https://doi.org/10.1007/s40065-023-00439-8